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Introduction. Markov matrices are real square matrices

M =





p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn



 : pij = probability i ← j

with elements that (as conditional probabilities) fall within the interval [0, 1] and
that possess the property that if the column vector p is stochastic (real elements
∈ [0, 1] that sum to unity) then so is Mp , which entails that the columns of M
sum to unity. Discrete Markov processes proceed

p → Mp → M2 p → M3 p → · · ·

We have the generalized spectral resolution of M (biorthogonal generalization of
the standard spectral resolution that is available when M is symmetric; i.e.,
when the process is subject to “detailed balance”)

M = λ1P1 + λ2P2 + · · · + λνPν : ν ! n (1)

where {λ1, λ1, . . . , λν} are the distinct eigenvalues of M, and {P1, P1, . . . , Pν}
are a complete set of orthogonal projection matrices that project onto the
respective eigenspaces of M. If none of the eigenvalues vanish (all Markov
matrices are in fact non-singular) we can introduce

L = log M = log λ1· P1 + log λ2· P2 + · · · + log λν · Pν (2)

and write
M = exp L (3)

But eigenvalues of M will occasionally be complex (occurring in conjugate
pairs), and so therefore will be the associated eigenvectors and projection
matrices. And even when M is symmetric, some of the eigenvalues—all of
them now real—may be negative. In all such cases log λ is complex, and it is
only by delicate conspiracy that the constructions (3) manage to be real.
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By natural generalization of (3) we have

M(t) = exp{tL} : t to be thought of as “time” (4)

which gives back the real matrices M t at positive integral values of t, and at
non-integral times provides a continuous interpolation between those integral
powers of M. But at non-integral times M(t) will in general (i.e., except when
all eigenvalues of M are positive real numbers) be complex, with the consequence
that the vectors p(t) = M(t)p are not interpretable as stochastic vectors.

We note in passing that the set of all Markov matrices (of given dimension)
is multiplicatively closed (yet not a group, because M –1 is generally not
Markovian: it has elements of the wrong sign, and/or that fall outside of [0, 1]).
From

M(t + τ) = (I + τL) · M(t)

we see that M(t) and M(t + τ) (here τ = δt is infinitesimal) will both be
Markovian if and only if L is a “Kirchhoff” matrix (real, with columns that sum
to zero), but must in general expect L to be a “complex Kirchhoff ” matrix.

Permutation matrices P are Markov matrices endowed with the special
property that all elements are either 1 or 0, which requires that a solitary 1
appears in every row and column. Let {P} refer to the set of all permutations
of n symbols/objects. The set {P} has n! elements, of which one is the identity
permutation I, and is closed under composition, from which it follows that for
every individual P there is a µ such that Pµ = I: {P} is a group, every element
of which is cyclic, with P –1 = Pµ−1. Properties of the group generated by any
individual P follow from those of its cyclic subgroups; in particular, the period
of P is the least common multiple of the periods of its subgroups. All of which
is reflected in properties of the set {P} of n× n matrix representations of {P},
which follow from properties of the cyclic permutation matrices

C2 =
(

0 1
1 0

)
, C3 =




0 0 1
1 0 0
0 1 0



 , C4 =





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



 , . . .

that one can use to construct matrices such as
(

C2 O
O C3

)
, C2⊗C3 =

(
O C3

C3 O

)
, etc.

My objective will be to construct matrices Cn(t) that interpolate between
the integral powers of such matrices. I begin by reviewing the essentials of the
tool that supports the discussion.

Generalized spectral decomposition. Let X be an arbitrary (real or complex,
singular or non-singular) n × n matrix, let {λ1, λ2, . . . , λn} be its (possibly
degenerate) spectrum, and let {|a1), |a2), . . . , |an)} be an eigenbasis in the
(generally complex) vector space Vn (with normalization not assumed). From
{|aj)} and their transposed conjugates {(ai|} construct the hermitian matrix

‖hij‖ : hij = (ai|aj)
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(which is non-singular by linear independence of the {|aj)}) and its inverse
‖hij‖ : hikhkj = δi

j

The generic element |x)∈Vn can be developed
|x) = |aj)xj

which gives
(ak|x) = hkjx

j

Therefore
hik(ak|x) = hikhkjx

j = δi
jx

j = xi

giving
|x) = |ai)hik(ak|x) : all |x)

from which we conclude that
|ai)gij(aj | = I

Introduce now into Vn a second (generally non-orthogonal) “reciprocal
basis” with elements

|Aj) = |ai)hij similarly (Ai| = hij(aj |
which supply these alternative constructions of the unit matrix:

|Ai)(ai| = |Ai)hij(Aj | = |aj)(Aj | = I
Moreover

(Ai|aj) = gik(ak|aj) = gikgkj = δi
j

which is to say:
|Ai) ⊥ all |aj) : j '= i

The reciprocal bases {|ai)} and {|Aj)} are said to be “biorthogonal.”

Look now to the matrices
Pi = |ai)(Ai| : no summation on i

where the index placement on Pi is merely conventional (intended to convey
no transformation-theoretic meaning) and the notation P is intended here to
suggest not “permutation” but “projection.” It follows from preceding remarks
that the {Pi} comprise a complete set of orthogonal projection operators:

∑
i Pi = I

PiPj = |ai)(Ai|aj)(Aj | = |ai)δi
j(A

j | =
{

Pi : i = j
O : i '= j

They project onto 1-spaces (rays); specifically

right action: Pi|x) = |ai)xi

left action: (x|Pi = xi (Ai|

}
: no summation on i

We now have
X = XI

=
∑

iXPi

=
∑

iX|ai)(Ai| =
∑

iλi|ai)(Ai| =
∑

iλiPi (5)
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which is the “generalized spectral representation” of X, and gives back the
standard spectral representation in cases where the eigenvectors of X are
orthogonal (and can be assumed to have been normalized).

More generally, let W be an arbitrary n × n square matrix. We are in
position now to write

W = I W I
=

∑
ij Pi W Pj

=
∑

ij |ai)(Ai|W |aj)(Aj |
=

∑
ij wi

j |ai)(Aj | where wi
j = (Ai|W |aj) (6)

Here W is displayed as a weighted linear combination of the n2-population of
matrices

F j
i = |ai)(Aj | : gives back Pi when i = j

(these provide a “basis in the space of matrices”) and ‖mi
j‖ provides, with

respect to the non-orthogonal {|ai)}-basis, the matrix representation of W ; it
permits |x) → |x̃) = W |x) to be represented

xi → x̃i = mi
jx

j

We note in passing that the F-matrices are tracewise orthogonal

tr(F j
i F l

k ) = δ jl
ik

so (6) can be written as a “generalized Fourier identity”

W =
∑

ij wi
jF

j
i with wi

j = tr(F j
i W)

Fractional permutation in the simplest case. We look to the case

C2 =
(

0 1
1 0

)

C2 is a symmetric real matrix, so standard spectral decomposition suffices,
but to achieve consistency with subsequent discussion of higher-order cases
we adopt the generalized protocol, and adopt also the ordering/normalization
conventions of Mathematica.

The eigenvalues of C2 are square roots of unity: {λ1, λ2} = {−1, 1}. The
respective eigenvectors are

|a1) =
(
−1
+1

)
, |a2) =

(
1
1

)

Therefore
‖hij‖ =

(
2 0
0 2

)
, ‖hij‖ =

(
1/2 0
0 1/2

)
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|A1) =
(
−1/2
+1/2

)
, |A2) =

(
1/2
1/2

)

P1 =
(

+1/2 −1/2
−1/2 +1/2

)
, P2 =

(
1/2 1/2
1/2 1/2

)

(the complete, orthogonal and projective properties of which check out) and we
obtain finally the manifestly correct statement

C2 =
(

0 1
1 0

)
= (−1)P1 + (+1)P1

But log(−1) = iπ and log(+1) = 0 so we have

L2 ≡ log C2 = iπP1 = iπ
2

(
+1 −1
−1 +1

)
(7)

giving finally (with assistance here of the command MatrixExp[ ])

C2(t) = exp{tL2} = 1
2

(
1 + eiπt 1 − eiπt

1 − eiπt 1 + eiπt

)
(8)

We note/verify that (i) the imaginary matrix L2 possesses the Kirtchhoff
property (columns add to 0); (ii) C2(t) is complex except when t is an integer;
(iii) C2(t) composes by the simple rule

C2(u)···C2(v) = C2(u + v)

from which by C2(2) = I it follows that (iv) C2(t) is periodic (cyclic):

C2(t + 2) = C2(t)

(v) C2(t) is non-singular for all t:

det C2(t) = exp{tr(tL2)} = eiπt

which is real if and only if t = p (an integer), and when real is proper/improper
(±1, in permutation language is even/odd) according as p is even or odd;
(vi) the eigenvalues {1, eiπt} of C2(t) are the exponentiated eigenvalues of
and tL2 = log C2(t); (vii) C2(t)p is complex (therefore not interpretable as a
stochastic vector) unless t is an integer, but in all cases its elements sum to
unity; (viii) C2(t) is unitary:

Cadjoint
2 (t) = Cinverse

2 (t) = C2(−t)

Fractional permutation in the next simplest case. The matrix

C3 =




0 0 1
1 0 0
0 1 0





is not symmetric: the full force of the generalized spectral resolution comes now
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indispensably into play. The eigenvalues of C3 are the cube roots of unity

{λ1, λ2, λ3} = {(−1)2/3,−(−1)1/3, 1}
= {eiω, ei2ω = e−iω, ei3ω = 1} : ω = 2π/3

=
{

1
2 (−1 + i

√
3), 1

2 (−1 − i
√

3), 1
}

and the associated eigenvectors can be described

|a1) =




−eiω − 1

eiω

1



 , |a2) =




−e−iω − 1

e−iω

1



 , |a3) =




1
1
1





(We note, for what it’s worth, that the elements of |a1) and |a2) sum to zero.) So
‖hij‖ = 3I, ‖hij‖ = 1

3 I and (after major simplification of the results announced
by Mathematica)

P1 = 1
3




1 eiω e−iω

e−iω 1 eiω

eiω e−iω 1



 , P2 = 1
3




1 e−iω e+iω

eiω 1 e−iω

e−iω eiω 1





P3 = 1
3




1 1 1
1 1 1
1 1 1





We confirm that
C3 = λ1P1 + λ2P2 + λ3P3

The log spectrum is {iω,−iω, 0} so

L3 ≡ log C3 = iω(P1 − P2) = ω · 1√
3




0 −1 1
1 0 −1

−1 1 0



 : ω = 1
3 · 2π

This (surprisingly?) is a real antisymmetric matrix, the generator of a ω -rotation
about the (1, 1, 1) axis; the (trivially unitary) rotation matrix

C3(t) = exp{tL3}

is familiar as the rotation that cyclically permutes orthogonal axes in 3-space.
It sends



a
b
c



→ 1
3




a(1 + 2 cos θ) + b(1 − cos θ −

√
3 sin θ) + c(1 − cos θ +

√
3 sin θ)

b(1 + 2 cos θ) + c(1 − cos θ −
√

3 sin θ) + a(1 − cos θ +
√

3 sin θ)
c(1 + 2 cos θ) + a(1 − cos θ −

√
3 sin θ) + b(1 − cos θ +

√
3 sin θ)





=




c
a
b



 at θ ≡ ω t = 1
32π

=




b
c
a



 at θ ≡ ω t = 2
32π
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and provides real-valued (!) interpolations between those discrete permutations.
C3(t) possess properties analogous to—but differing in certain particulars from
—those previously listed for C2(t): (i) the matrix L2 possesses the Kirchhoff
property; (ii) C3(t) is now real for all values of t; (iii) C3(t) composes by the
simple rule C3(u)···C3(v) = C3(u + v), from which by C3(3) = I it follows that
(iv) C3(t) is periodic (cyclic): C3(t + 3) = C3(t); (v) C3(t) is non-singular

det C3(t) = exp{tr(tL3)} = e0 = 1

—and, indeed, proper—for all t: all cyclic permutations—even fractional
permutations—of three objects are even; (vi) the eigenvalues {eiωt, e−iωt, 1}
of C3(t) are the exponentiated eigenvalues of tL3 = log C3(t) ; (vii) C3(t)p is
real, and is invariably interpretable as a stochastic vector; (viii) C3(t) is a real
rotation matrix: Ctranspose

3 (t) = Cinverse
3 (t) = C3(−t), so trivially unitary.

I digress to make more explicit the rotational action of C3(t).1 Exploiting
the orthogonal projectivity of the P-matrices, we have

C3(t) = exp
{
t(iωP1 − iωP2 + 0P3)

}

= eiω t P1 + e−iω t P2 + P3

= cos(ω t) · (P1 + P2) + i sin(ω t) · (P1 − P2) + P3

The complex matrices {P1, P2} were seen to be complex conjugates of each
other, so

Q = (P1 + P2) = 1
3




+2 −1 −1
−1 +2 −1
−1 −1 +2



 = I − P3

A = i(P1 − P2) = 1√
3




0 −1 +1

+1 0 −1
−1 +1 0





are both real. We have only to note that A = AQ to obtain

C3(t) = P3 +
{
cos(ω t)I + sin(ω t)A

}
·Q

When applied to a 3-vector rrr the leading P3 term projects out the t-independent
component rrr‖ of rrr = rrr‖ + rrr⊥ that is parallel to the spin axis (1, 1, 1), while the
trailing term causes the normal component rrr⊥ to rotate with angular velocity ω.

Fractional cyclic permutations of 4th order. Marked differences emerged when
we advanced from cyclic permutations of second order to permutations of third
order. It is natural to speculate that this may have partly to do with the fact

1 Here I borrow from the discussion of n-dimensional rotation matrices that
appears on pages 14–18 of “Extrapolated interpolation theory” (April 1997),
which was adapted from and “What does an N-dimensional rotation look like?”
(notes for a Reed College Math Seminar presented on 14 February 1980;
Transformational Physics & Physical Geometry 1971–1983).
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that iterated cyclic permutations of even order proceed odd-even-odd-even. . . ,
while those of even order proceed even-even-even-even. . . I look, therefore, to
some higher-order cases. The relevant Mathematica commands are essentially
order independent, but the results become rapidly too complex to transcribe. I
must be content, therefore, to leave some of them in the notebook where they
were born, and to report only their most salient features.

We look to the case

C4 =





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0





The eigenvalues of C4 are the fourth roots of unity (which Mathematica presents
in an oddly unnatural order)

{λ1, λ2, λ3, λ4} = {−1, i,−i, 1}
=

{
eiπ, eiπ/2, e−iπ/2, e0

}

The associated eigenvectors are

|a1) =





−1
+1
−1
+1



 , |a2) =





−i
−1
+i
+1



 , |a3) =





+i
−1
−i
+1



 , |a4) =





+1
+1
+1
+1





(Again we note that the elements of the first three sum to zero.) So we have
‖hij‖ = 4I and ‖hij‖ = 1

4 I and are led to the complete quartet of orthogonal
complex projection matrices

P1 = 1
4





+1 −1 +1 −1
−1 +1 −1 +1
+1 −1 +1 −1
−1 +1 −1 +1



 , P2 = 1
4





+1 +i −1 −i
−i +1 +i −1
−1 −i +1 +i
+i −1 −i +1





P3 = 1
4





+1 −i −1 +i
+i +1 −i −1
−1 +i +1 −i
−i −1 +i +1



 , P4 = 1
4





+1 +1 +1 +1
+1 +1 +1 +1
+1 +1 +1 +1
+1 +1 +1 +1





The log spectrum of C4 is {iπ, 1
2 iπ,− 1

2 iπ, 0} so

L4 = log C4 = iπ
{
P1 + 1

2P2 − 1
2P3

}

= π
4










0 −1 0 +1
+1 0 −1 0
0 +1 0 −1
−1 0 +1 0



 + i





+1 −1 +1 −1
−1 +1 −1 +1
+1 −1 +1 −1
−1 +1 −1 +1
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It is clear by inspection that L4 is an anti-hermitian (complex) Kirchhoff matrix,
so

C4(t) = exp{tL4}

is a unitary complex Markov (cyclic permutation) matrix. The composition law
C4(u)···C4(v) = C4(u + v) is (as always) obvious, and by C4(4) = I leads to the
periodicity statement C4(t + 4) = C4(u). From the general identity

det(eA ) = etrA

we have

det C4(t) = eiπt =
{

+1 : t an even integer
−1 : t an odd integer

Exponentiation of

tL4 = iω t{2P1 + P2 − P1 + 0P4} : ω = π/2

gives
C4(t) = e2iωtP1 + eiωtP2 + e−iωtP3 + e0P4

= eiωt
{
eiωtP1 + e−iωtP4

}
+

{
eiωtP2 + e−iωtP3

}

which can be written

C4(t) = eiωt
{

cos(ωt)I + sin(ωt)A1

}
Q1 +

{
cos(ωt)I + sin(ωt)A2

}
Q2

where
Q1 = P1 + P4

A1 = i(P1 − P4)
Q2 = P2 + P3

A2 = i(P2 − P4)

entail A1Q1 = A1, A2Q2 = A2. The matrices

Q1 = 1
2





1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1



 , Q2 = 1
2





1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1





comprise a complete set of symmetric orthogonal projection matrices, that by
trQ1 = trQ2 = 2 project onto orthogonal 2-spaces in the complex space V4.
The matrices

A1 = −i 1
2





0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



 , A2 = 1
2





0 −1 0 1
1 0 −1 0
0 1 0 −1
−1 0 1 0
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are imaginary antihermitian and real antisymmetric, respectively—generators
by exponentiation of matrices that are respectively unitary/rotational. Their
properties are similar in this respect:

A1A1 = −Q1, A2A2 = −Q2

It follows that the preceding description of C4(t) can be formulated

C4(t) = eiω t · eωtA1 Q1 + eωtA2 Q2

where the first term executes a unitary transformation on the eigenplane of Q1,
and the second a rotation on the orthogonal eigenplane of Q2. The interpolating
matrix C4(t) is complex except at integral values of t, when it reproduces the
values of (C4)p.

Fractional cyclic permutations of 5th order. We look finally to

C5 =





0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0





of which the eigenvalues are fifth roots of unity:

{λ1, λ2, λ3, λ4, λ5} = {(−1)4/5,−(−1)1/5, 1, (−1)2/5,−(−1)3/5}
= {ei2ω, ei3ω, 1, eiω, ei4ω} : ω = 2π/5

The associated eigenvectors2 are

|a1)=





e3iω

eiω

e4iω

e2iω

1




, |a2)=





e2iω

e4iω

eiω

e3iω

1




, |a3)=





1
1
1
1
1




, |a4)=





e4iω

e3iω

e2iω

eiω

1




, |a5)=





eiω

e2iω

e3iω

e4iω

1





2 To construct the eigenvectors Mathematica has to solve quintics, so displays
the results as complex numerics. I have used

eiω = 0.309017 + i0.951057

e2iω = −0.809017 + i0.587785

e3iω = −0.809017 − i0.587785

e4iω = 0.309017 − i0.951057

to infer the symbolic meaning of the numerics.
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and are, as in all previous cases, orthogonal: ‖hij‖ = 5I, ‖hij‖ = 1
5 I . The

resulting P-matrices are—except for

P3 = 1
5





1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1





—complex hermitian and have columns that sum to zero. They all have the
form 1

5

(
a matrix in which every eigenvalue appears in every row & column

)
,

but it would serve no useful purpose to write them down. They comprise a
complete orthogonal set of projection matrices.3 From the generalized spectral
resolution

C5 = e2iωP1 + e−2iωP2 + P3 + eiωP4 + e−iωP5

we are led to write
L5 = log C5 = iω

{
2(P1 − P2) + (P4 − P5)

}

(which is3 a real antisymmeric Kirchhoffian matrix) and from it to construct
the interpolating Markovia rotation matrix

C5(t) = exp
{
t log L5

}

=
{

cos(2ωt)I + sin(2ωt)A1

}
Q1 + P3 +

{
cos(ωt)I + sin(ωt)A2

}
Q2

where
Q1 = P1 + P2

A1 = i(P1 − P2)
Q2 = P4 + P5

A2 = i(P4 − P5)

entail A1Q1 = A1, A2Q2 = A2. The matrices {Q1, Q2} are3 real symmetric
matrices, while {A1, A2} are3 real and antisymmetric. {Q1, Q2, P3} comprise
a complete set of orthogonal projection matrices. From trP3 = 1 we see that
P3 projects onto a ray in the real vector space V5, namely (1, 1, 1, 1, 1), while
{Q1, Q2} project onto orthogonal 2-spaces that are both orthogonal to
that “axial” ray. C5(t) executes a spin with angular velocity ω1 = 2

52π on
the eigenplane of Q1, and a spin with angular velocity ω2 = 1

52π = 1
2ω1 on the

eigenplane of Q2. C5(t) gives back powers of C5 at integral values of t.

The emergent pattern. We have been looking to permutation matrices of the
cyclic form

Cn =





0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





3 To establish such facts I used the post-command /.ω → 2π/5//N//Chop to
convert strings of symbolic expressions into recognizable numbers.
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from which we have constructed interpolating “fractional permutations”

Cn(t) = exp
{
t log Cn

}

The eigenvalues of such matrices are nth roots of unity{1, eiω, e2iω, . . . , e(n−1)iω}
where ω = 2π/n. We have learned, however, to distinguish two cases: we have

det Cn =
∏

all roots

(nth root of unity) =
{−1 : n = 2ν even

+1 : n = 2ν + 1 odd

which follow as special cases (set t = 1) from the more general statement

det Cn(t) =
∏

all roots

(nth root of unity) t = ei(n−1)πt

Evidently det Ceven(t) progresses {+1,−1, +1,−1, . . .} as advances through the
integers (i.e., as Ceven(t) assumes the value of successive powers of Cn), while
Codd(t) progresses {+1, +1, +1, +1, . . .}.

C2ν is unitary; it resolves the complex vector space V2ν into ν orthogonal
planes on which it executes unitary transformations with “angular velocity
parameters” {ω, 2ω, . . . , νω} : ω = 2π/2ν = π/ν. C2ν+1(t), on the other
hand, is rotational; it resolves the real vector space V2ν+1 into an invariant
“axis” and ν mutually orthogonal planes each of which is orthogonal to that
axis, and on which it executes rotations with angular velocities {ω, 2ω, . . . , νω}:
ω = 2π/(2ν + 1).

3×3 representation of Perm(3). The construction

(
x1(t)
x2(t)

)
= C2(t)

(
x1

x2

)

describes (at t = 0, 1) the explicit action of the elements of Perm(2) on the
symbols {x1, x2}. The construction




x1(t)
x2(t)
x3(t)



 = C3(t)




x1

x2

x3





provides, on the other hand, an explicit account of the action only of a cyclic
subgroup of Perm(3), as was demonstrated on page 6. We stand in need of a
parameterized 3 × 3 matrix that ranges over all the elements of Perm(3). We
look in this light to the matrix produced by the “telescopic construction”

G3(s, t) ≡
(

C2(s) 0
0 1

)
C3(t)

which is of the form
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G3(s, t) =




a11 a12 0
a21 a22 0
0 0 1








b11 b12 b13

b21 b22 b23

b31 b32 b33





but is much too complicated to spell out on the printed page, so will be allowed
to remain in Mathematica’s memory. However, basic information follows
directly from the manner in which C2(s) and C3(t), with their known properties,
enter into the construction of G3(s, t). For example, G3(s, t) is a product of
unitary Markov matrices, so is itself such a matrix. One has

det G3(s, t) = det C2(s) · det C3(t) = eiπs

G3(s, t) is evidently doubly periodic

G3(s + 2, t) = G3(s, t + 3) = G3(s, t)

which is to say: the {s, t}-parameter space T2 is toroidal.
With Mathematica’s assistance we look to the triples




x1(s, t)
x2(s, t)
x3(s, t)



 = G3(s, t)




x1

x2

x3





and obtain



x1

x2

x3





0,0




x3

x1

x2





0,1




x2

x3

x1





0,2




x2

x1

x3





1,0




x1

x3

x2





1,1




x3

x2

x1





1,2

where the subscripts indicate the integral values of {s, t} that produced the
triple in question. For non-integral values of the parameters x(s, t) interpolates
(unitarily) between those triples. Those eight triples are precisely the triples
produced from {x1, x2, x3} by the action of Perm(3). Since G3(s, t) is Markovian
we have

x1(s, t) + x2(s, t) + x3(s, t) = x1 + x2 + x3 : all {s, t}

which lends an expanded meaning to the sense in which x1 + x2 + x3 is a
“symmetric polynomial,” and indeed: places in an expanded context the entire
elegant theory of symmetric polynomials (in three variables).

The problem addressed above—How to construct an n×n representation of
Perm(n)?—arises at very n. I look to the case n = 4. The “telescopic procedure”
employed above motivates the construction of

G4(s, t, u) ≡




C2(s) 0 0

0 1 0
0 0 1




(

C3(t) 0
0 1

)
C4(u)

=
(

G3(s, t) 0
0 1

)
C4(u)
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This is a product of 4×4 Markovian matrices with period 6 and 4, respectively.
We expect it to be, therefore, Markovian with period 24 = order of Perm(4).
And so, indeed, it is: on introduction of

X =





x1

x2

x3

x4





the command

Flatten[Table[MatrixForm[G4(s, t, u).X]],{s, 1, 2},{t, 1, 3},{u, 1, 4}]
produces a list of 24 column vectors with permuted subscripts, all of which are
reported by DeleteDuplicates to be distinct. Moreover, the command

Total[Transpose[G4(s, t, u).X][[1]]]//Simplify

produces4

x1 + x2 + x3 + x4 : all {s, t, u}

From the evident triple periodicity of G4(s, t, u)

G4(s + 2, t, u) = G4(s, t + 3, u) = G4(s, t, u + 4) = G4(s, t, u)

we see that the {s, t, u}-parameter space T3 is hyper-toroidal. The elements of
the discrete group Perm(4) live at the integral points of T3. Finally, we have

det G4(s, t, u) = det C2(s) · det C3(t) · det C4(u)

= eiπs · e0 · eiπu

= eiπ(s+u)

which at integral points is ±1 according as s + u is even or odd (i.e., according
as s and u have the same or opposite parity) and is independent of t.

The telescopic procedure

Gn(v1, v2, . . . , vn−1) → Gn+1(v1, v2, . . . , vv)

=
(

Gn(v1, v2, . . . , vn−1) 0
0 1

)
Cn(vn)

advances dimension by 1 and (on the evidence of those examples) multiplies the
period by a factor of n, resulting in a period of n! = order of Perm(n). I have
high confidence that Gn(v1, v2, . . . , vn−1) can fairly be said to provide an n×n
fractional representation of Perm(n), and at the same time an interpolated
account of the explicit action of Perm(n) on the symbols {x1, x2 . . . , xn}. We

4 The elements of G4(s, t, u) are enormously (!) complicated, but it takes
Mathematica not more than 2 seconds to perform those calculations.
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expect det Gn(v1, v2, . . . , vn−1)—the continuous analog of the parity of the
elements of Perm(n)—to be given by

det Gn(v1, v2, . . . , vn−1) = eiπ(v1+v3+···+vp)

where p = greatest odd integer ! (n − 1).

Some unexplored ideas. From the elements {g1, g2, . . . , gn} (g1 = identity) of a
finite group construct the group table, the successive rows of which

kth row : gk · {g1, g2, . . . , gn}

are permutations of the first row, which is the upshot of Cayley’s theorem: all
finite groups are isomorphic to subgroups of Perm(msufficiently large). Look, for
example, to the square group (dihedral group of order 8), which describes the
symmetries of the following figure:

1 2

4 3

We have

(1, 2, 3, 4) −→






(1, 2, 3, 4) by identity I
(4, 1, 2, 3) by 90◦ clockwise rotation R1

(3, 4, 1, 2) by 180◦ clockwise rotation R2

(2, 3, 4, 1) by 270◦ clockwise rotation R3

(4, 3, 2, 1) by reflection in horizontal axis H
(2, 1, 4, 3) by reflection in vertical axis V
(3, 2, 1, 4) by reflection in ascending diagonal D1

(1, 4, 3, 2) by reflection in descending diagonal D2

which are accomplished by the matrices shown on the next page. Those matrices
live, as noted, at an 8-element subset of the 24 integral points {i, j, k} on T3.
We note that the first four of those operations (represented by I, R1, R2, R3)
reside on the curve (0, 0, u), while the latter four (represented by H, V, D1, D2)
reside on the curve (1, 2, u). It is tempting to suppose that

{G3(0, 0, u), G3(1, 2, u)}

provides a continuous generalization of the square group (note in this connection
that the permutations of a card can be accomplished by continuous rotations
about five axes in 3-space), and that all subgroups of Perm(3) can be associated
with curves drawn on T3.
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I =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = G4(0, 0, 0)

R1 =





0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



 = G4(0, 0, 1)

R2 =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



 = G4(0, 0, 2)

R3 =





0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



 = G4(0, 0, 3)

H =





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 = G4(1, 2, 3)

V =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



 = G4(1, 2, 1)

D1 =





0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



 = G4(1, 2, 0)

D2 =





1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



 = G4(1, 2, 2)

Familiarly, the square group is non-Abelian, which is to say: the group table

I R1 R2 R3 H V D1 D2

I I R1 R2 R3 H V D1 D2

R1 R1 R2 R3 I D2 D1 H V
R2 R2 R3 I R1 V H D2 D1

R3 R3 I R1 R2 D1 D2 V H
H H D1 V D2 I R2 R1 R3

V V D2 H D1 R2 I R3 R1

D1 D1 V D2 H R3 R1 I R2

D2 D2 H D1 V R1 R3 R2 I
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is not symmetric (though it possesses symmetric sub-blocks, indicating the
commutativity of {R1, R2, R3}, {H, V} and {D1, D2}). This brings into focus
the fact that while all matrices of the form Cn(t) (any n) commute, the matrices
Gn(v1, v2, . . . , vn−1)—formed telescopically from them—generally do not. We
confront therefore this fundamental question: How do fractional permutations

compose? This is a difficult question to which I will return. . .but first I
would like to empty my head of some additional unexplored—and quite possibly
frivilous—ideas.

In the quantum theory of indistinguishable particles one encounters objects
of the form

ΨS(x1, x2, . . . , xn) =
∑

P

ψ(P[x1, x2, . . . , xn])

ΨA(x1, x2, . . . , xn) =
∑

P

(−)Pψ(P[x1, x2, . . . , xn])

—“symmetrized/antisymmetrized” versions of the function ψ(x1, x2, . . . , xn).
Often one assumes ψ(x1, x2, . . . , xn) to have the form

ψ(x1, x2, . . . , xn) = φi1(x1)φi2(x2) · · ·φin(xn)

where the φi(x) are orthonormal elements of a Hilbert space H and—writing Fn

to denote the space of all such (anti)symmetrized product functions—constructs
the Fock space F = F0 ⊕ F1 ⊕ F2 ⊕ · · · and introduces operators a i and a+

i
that (respectively) remove φi(xn)-dependence from elements of Fk to produce
elements of Fk−1 or introduce φi(xn)-dependence to produce elements of Fk+1.5
I am led semi-whimsically to wonder: Is it feasible to

replace
∑

P

by
∫

G
?

replace
∑

P

(−)P by
∫

G
det(G) ?

Having wandered into the quantum regime, I note that modern quantum
theory has given rise the development of ideas alternative to those we associate
with the names of Maxwell-Boltzmann, Einstein-Bose and Fermi-Dirac, several
of which are known as “fractional statistics.” I am thinking of “parastatistics”

5 In “Toy quantum field theory: populations of indistinguishable finite-state
systems,” (notes for a Reed Physics Seminar presented on 1 November 2000), I
show in detail how such a formalism works out when the φi(x) are replaced by
orthonormal basis vectors in a finite-dimensional vector space and products are
replaced by Kronecker products. I apply the resulting formalism illustratively
to the quantum theory of angular momentum, and obtain results that somewhat
resemble results obtained by Majorana and Schwinger.
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(which engaged the productive interest of O. W. Greenberg, my friend from
Brandeis days), “braid statistics,” “anyon statistics (Abelian & non-Abelian)”
which inter into the theory of the fractional quantum Hall effect and engage
notions like fractional spin, fractional charge, topological field theory, Berry
phase and similar exotica. One cannot but wonder whether “fractional
permutations” have a role to play (perhaps already do play?) in such subject
areas.

The composition problem for fractional permutations. The permutation group
Perm(n) is—as a group—certainly closed under composition. The set of all
n × n Markov matrices is also closed under composition.6 Gn(ξ)-matrices7
are Markovian and have been seen—at least in the cases G3(integers) and
G4(integers), where they reproduce the action of Perm(3) and Perm(4)—to
be multiplicatively closed. It is natural, therefore, to anticipate the existence
of formulae of the type

Gn(ξ1) · Gn(ξ2) = Gn(ξn(ξ1, ξ2))

where ξ(ξ1, ξ2) provides the fractional extension of the Perm(n) group table,8
to which it reduces when ξ1 and ξ2 are both integral.

Composition problems of this sort are usually difficult. For example:
the composition of 3 × 3 rotation matrices entails finding {θ, A} such that

6 But not a group: it contains an identity, but the inverses of Markov
matrices are typically—but not invariably—non-Markovian (columns sum to
unity, but some elements may fall outside the interval [0, 1]).

7 Here I have adopted the abbreviation ξ ≡ {v1, v2, . . . , vn−1}.
8 Mathematica’s MinimumChangePermutations[{1,2,3}], which requires

installation of the the Combinatorica package, produces

p1 = {1, 2, 3}
p2 = {1, 2, 3}

p3 = {3, 1, 2}
p4 = {1, 3, 2}

p5 = {2, 3, 1}
p6 = {3, 2, 1}

Writing (for example) {2, 3, 1}{a, b, c} = {b, c, a} to signify that the first factor
has acted upon the second (accomplished by Permute[{a, b, c},{2, 3, 1}]), we
obtain for Perm(3) this illustrative group table:

p1 p2 p3 p4 p5 p6

p1 p1 p2 p3 p4 p5 p6

p2 p2 p1 p4 p3 p6 p5

p3 p3 p6 p5 p2 p1 p4

p4 p4 p5 p6 p1 p2 p3

p5 p5 p4 p1 p6 p3 p2

p6 p6 p3 p2 p5 p4 p1

That is the kind of information we expect ξ3(ξ1, ξ2) to provide. And, moreover,
to interpolate!
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eθ1A1 · eθ2A2 = eθA

where in the present instance the A-matrices are 3 × 3 antisymmetric. The
problem becomes difficult when A1 and A2 fail to commute (or at least to
commute with their commutator). The generalized spectral resolution provides
in principle a method of attack, but generally leads to results in which it is
difficult to discover a coherent pattern.9

I restrict my exploratory remarks to the simplest case: the composition
problem posed by G3(s, t).10

The eigenvalues of G3(s, t), as supplied by Mathematica, are complicated,
but can be brought finally to the form

λ1 = 1

λ2 = α −
√

α2 − eiπs

λ3 = α +
√

α2 − eiπs





: α = ei 1

2 πs cos 1
2πs cos 2

3πt (7)

which are, we happen to notice, the roots of

(x − 1)(x2 − 2αx + eiπs) = 0

Interestingly, they would yield the correct product

det G3(s, t) = λ1λ2λ3 = eiπs

whatever real or complex value were assigned to α. Elementary manipulations
give

λ2 = ei 1
2 πs

{
(cos 1

2πs cos 2
3πt) − i

√
1 − (cos 1

2πs cos 2
3πt)2

}

λ3 = ei 1
2 πs

{
(cos 1

2πs cos 2
3πt) + i

√
1 − (cos 1

2πs cos 2
3πt)2

}

whence
λ2 = ei[ 12 πs−ϕ(s,t)]

λ3 = ei[ 12 πs+ϕ(s,t)]
(8.1)

where

ϕ(s, t) = arccos (cos 1
2πs cos 2

3πt) (8.2)

= arccos
{

1
2

[
cos π

(
1
2s + 2

3 t
)

+ cos π
(

1
2s − 2

3 t
)]}

Equations (7) conform to the fact that the eigenvalues of unitary matrices lie
always on the unit circle. At t = 0 they supply λ2 = eiπs and λ3 = 1.

9 This problem, as it relates to 4×4 Lorentz matrices, is—after many pages of
dense algebraic preparation—addressed and solved on pages 75–94 of Elements
of Special Relativity (1966).

10 The case G2(s) ≡ C2(s) is trivial, since it is cyclic.
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The eigenvalues of G3(s, t; σ, τ) ≡ G3(s, t) · G3(σ, τ), as supplied to us
by Mathematica, are {1, λ2(s, t ; σ, τ), λ3(s, t ; σ, τ)} where

λ2 = (sum of 9 terms) −
√

(sum of 48 terms)

from which λ3 is obtained by a simple sign reversal, and where the terms
are real or imaginary 4-fold products of sines or cosines (or their squares) of
{πs, πσ, 2

3πt, 2
3πτ}; they are, in short, a complicated mess. But they do conform

to the requirement that

det G3(s, t)G3(σ, τ) = λ2λ3 = det G3(s, t) · det G3(s, t) = eiπ(s+σ)

and yield to simplifications patterned on (7). We find at length that

λ1(s, t, σ, τ) = 1

λ2(s, t, σ, τ) = a −
√

a2 − eiπ(s+σ)

λ3(s, t, σ, τ) = a +
√

a2 − eiπ(s+σ)

where
a = ei 1

2 π(s+σ)A

and

A(s, t, σ, τ) = 1
4

{
cos π

[
1
2 (s + σ) + 2

3 (t + τ)
]
+ cos π

[
1
2 (s + σ) + 2

3 (t − τ)
]

+ cos π
[
1
2 (s + σ) − 2

3 (t + τ)
]
+ cos π

[
1
2 (s + σ) − 2

3 (t − τ)
]

+ cos π
[
1
2 (s − σ) + 2

3 (t + τ)
]
− cos π

[
1
2 (s − σ) + 2

3 (t − τ)
]

+ cos π
[
1
2 (s − σ) + 2

3 (t + τ)
]
− cos π

[
1
2 (s − σ) − 2

3 (t − τ)
]}

= 1
2

{
cos π

[
1
2 (s + σ)

]
cos π

[
2
3 (t + τ)

]

+ cos π
[
1
2 (s + σ)

]
cos π

[
2
3 (t − τ)

]

+ cos π
[
1
2 (s − σ)

]
cos π

[
2
3 (t + τ)

]

− cos π
[
1
2 (s − σ)

]
cos π

[
2
3 (t − τ)

]}

give

λ2

λ3

}
= ei 1

2 π(s+σ)
{
A ∓ i

√
1 − A2

}

= ei[ 12 π(s+σ)∓Φ(s,t,σ,τ)] (9.1)
Φ(s, t, σ, τ) = arccos[A(s, t, σ, τ)] (9.2)

From (9) we recover (8) at σ = τ = 0, as we should, since G3(0, 0) = I. The
periodicity properties of Φ(s, t, σ, τ) duplicate (in the sense “provide two copies
of”) those of ϕ(s, t), just as the periodicity properties of G3(s, t ; σ, τ) duplicate
those of G3(s, t).
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The results (9), though not simple, are at any rate attractively patterned,
which encouraged me to think that the description of G3(s, t; σ, τ) might also
be, and might—in the sense that (9.1) mimics the structure of (8.1)—mimic
the structure of G3(s, t), which at page 13 had been allowed to remain within
Mathematica’s memory, but of which I undertook to make patterned sense.
When numerical values are assigned arbitrarily to {s, t} Mathematica reports
that the eigenvectors corresponding to the eigenvalues {1, λ1, λ2} to be of the
forms 


1
1
1



 ,




α2 + iβ2

−(α2 + 1) − iβ2

1



 ,




α3 + iβ3

−(α3 + 1) − iβ3

1





respectively, where the elements of the latter two sum to zero, and which
altogether comprise an unnormalized orthogonal triad. The problem, therefore,
is to make structured symbolic sense of a21 = α2 + iβ2. But a21 is enormously
complicated, and an intense effort to make sense of it came to naught; my
effort to construct a patterned symbolic description of G3(s, t) was frustrated.
The problem here traces to the circumstance that G3(s, t) is by construction a
product, and the spectral properties of products stand in an obscure relationship
to those of the factors (except when they commute). We can expect that
problem to be exacerbated when we turn from G3(s, t) to G3(s, t)·G3(σ, τ). The
problem presented by G4(s, t, u)·G4(σ, τ, υ) is even worse, while that presented
by the composition law for the fractional extension of Perm(n) (n ! 5) is quite
out of reach, since Mathematica does not provide symbolic solutions of quintics
or higher order polynomials.

It is, however, perhaps worth mentioning that if one assigns (integral or
non-integral) values to s (else t) things simplify greatly. For example, we have

G3(1, t) = 1
3




1 − C +

√
3S 1 + 2C 1 − C −

√
3S

1 + 2C 1 − C −
√

3S 1 − C +
√

3S
1 − C −

√
3S 1 − C +

√
3S 1 + 2C





C = cos 2
3π t, S = sin 2

3π t

which by det G3(1, t) =−1 (all t) is seen to interpolate between the odd elements
of Perm(3); i.e.. to trace a curve on T2. Similarly,

G3(0, t) = 1
3




1 + 2C 1 − C −

√
3S 1 − C +

√
3S

1 − C +
√

3S 1 + 2C 1 − C −
√

3S
1 − C −

√
3S 1 − C +

√
3S 1 + 2C





is seen by det G3(1, t) = +1 to interpolate between the even elements of Perm(3).
Those matrices are simple enough to admit of feasible symbolic spectral
decomposition. Explicit composition is made simple in the latter case by the
fact that G3(0, t) and G3(0, τ) commute, but difficult in the former case because
G3(1, t) and G3(1, τ) generally fail to commute. Similar remarks pertain to
G3(s, x) and G3(σ, x) unless x ≡ 0mod3.
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ADDENDUM

Comparison with an alternative procedure. On pages 4 and 5 I labored (brought
into play the full “generalized spectral decomposition” apparatus) to construct
the fractional generalization (8) of the simple permutation matrix

C2 =
(

0 1
1 0

)

It has occurred to me—while working on quite another problem—that the
Markovian matrix C2 can be written

C2 = I+K

K =
(
−1 1

1 −1

)
is a Kirchhoff matrix

It seems natural, therefore, to proceed directly to the construction of

etK = 1
2

(
1 + e−2t 1 − e−2t

1 − e−2t 1 + e−2t

)

which—though manifestly Markovian—is not cyclic. A similar result is obtained
if (for example) one writes

C3 = I+K

K =




−1 0 1

1 −1 0
0 1 −1






